Cell重磅发布:2017年度十大最佳论文出炉!(免疫疗法、肠道菌群、人工智能……)

Cell近日推出“Best of Cell 2017”合集,本文为大家介绍入选该盘点的十大最佳论文。



1#Cell人工智能又厉害了!构建最大规模的“神经-行为”蓝图


Mapping the Neural Substrates of Behavior



2017年7月13日发表在Cell杂志上的这项研究中,来自霍华德休斯医学研究所的科学家们借助于人工智能(AI),投入40万只果蝇,分析1000亿个注解,耗时6年完成了一个史诗级别的项目——创建了成年果蝇整个大脑神经回路图谱,并将这些回路与特定的行为对应起来。


这一研究规模空前、处理数据量超乎想象。业内很多学者将这一图谱评价为“金矿”,认为它为后续研究提供了很好的基础。


2#Cell别怪夜猫子自制力差,他们可能是基因突变了!


Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder



2017年4月6日发表在Cell杂志上的这项研究中,洛克菲勒大学的研究人员发现,基因CRY1的突变减慢了体内的生物钟。携带这种“夜猫子”突变的人比大多数人有更长的昼夜周期,这使得他们保持清醒的时间被推迟。


当对睡眠相位后移综合症(DSPD)患者的DNA进行检测时,研究人员发现,名为CRY1的基因发生了突变。研究中,科学家们还分析了DSPD患者家庭中的其他成员,并发现有5名亲属也携带了CRY1基因的突变。


随后,他们又考察了来自世界各地的大型遗传数据库,以确定CRY1突变的流行程度。通过与土耳其研究人员合作,他们发现了几十名携带CRY1突变的土耳其人。


最后,在搜索了更大的遗传数据库后,研究小组估计,在非芬兰人的欧洲血统中(non-Finnish European descent)每75人就有1人(one in 75 people)携带至少一个拷贝的DSPD突变。特别值得一提的是,DSPD突变是显性的,这意味着只携带一个拷贝也可能会导致睡眠障碍。


3#Cell让癌症免疫疗法更精准


Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses


2017年5月4日,发表在Cell杂志上的两项独立研究描绘了围绕肿瘤的免疫细胞明细图(Detailed maps)。这些重要的发现有望帮助判断开始癌症治疗的最佳时间,进而开发出更精准的癌症免疫疗法。


来自美国的一个科学家小组对肺癌进行了研究,结果发现,早期肿瘤也会扰乱免疫细胞的活性。论文的通讯作者Miriam Merad说:“我们发现,免疫细胞在肿瘤形成非常早期时就开始功能失调了,但癌症免疫疗法通常在患者病情复发和癌症晚期时才被使用。我们希望倡导在癌症的更早阶段开始使用免疫治疗,以免为时过晚。”


4#Cell报道素受体的结构生物学研究结果


Crystal Structure of the Human Cannabinoid Receptor CB1


人源素受体(human Cannabinoid Receptor 1, CB1)是人的中枢神经系统中表达量最高的G蛋白偶联受体(GPCR),也是治疗疼痛、炎症、肥胖症以及药物滥用的潜在靶点。然而,由于长期以来缺乏CB1的结构信息,基于CB1的药物研发并不顺利。


在这篇Cell论文中,包括中国科学家在内的国际研究小组解析了CB1-AM6538复合物2.8埃分辨率的晶体结构。该晶体结构揭示了CB1中拮抗剂小分子AM6538复杂的疏水结合口袋。AM6538非共价的紧密结合模式使其具备了成为长效缓释药物分子的巨大潜力,该特性也是治疗成瘾障碍药物的基本要求。此外,通过基于CB1的三维结构的分子对接及动力学模拟分析,研究人员还获得了不同类型的小分子激动剂与CB1的结合方式,揭示了配体小分子与CB1相互作用的一些新模式和新见解。


总结来说,该研究揭示出的CB1的三维精细结构对设计更加特异和副作用更小的拮抗剂类药物具有极大的推动作用。


5#Cell干细胞里程碑!科学家首次培育出人猪嵌合体胚胎


Interspecies Chimerism with Mammalian Pluripotent Stem Cells


2017年1月26日,发表在Cell杂志上的这项研究中,来自Salk研究所的科学家小组借助“魔剪”CRISPR技术首次成功培育出了人-猪嵌合体胚胎。


培育嵌合体胚胎分为两个阶段。首先,利用CRISPR技术删除猪胚胎内形成器官的关键基因,创造遗传“空位”;其次,把人类诱导多能干细胞注入猪胚胎内。


值得一提的是,科学家们共使用了3种不同状态的诱导多能干细胞。结果显示,中间态多能干细胞(intermediate hPSC)最适合形成嵌合体。


该研究的通讯作者 Juan Carlos Izpisua Belmonte表示,这是干细胞研究领域的一个里程碑。该研究的最终目标是在动物体内培育出可供移植的人类细胞、组织和器官。


6#Cell溶瘤病毒能让癌症免疫疗法更有效


Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy


目前,如何扩大能够获益于癌症免疫疗法的患者群体是这一领域最热门的研究方向之一。免疫联合疗法被很多人认为是解决这一难题的最终手段。2017年9月7日,Cell杂志上发表的这篇论文带来了一个“好消息”。在一项涉及21名患者的1b期临床试验中,研究人员测试了PD-1抗体Keytruda与溶瘤病毒T-VEC联合疗法的安全性和有效性。结果表明,Keytruda+T-VEC联合治疗的缓解率(response rate)为62%,可能比单独使用其中任何一种疗法效果都好。


参与这一1b期多中心试验的21名转移性黑色素瘤患者总缓解率为62%,这意味着他们的肿瘤缩小了。其中,三分之一患者为完全缓解,意味着他们的肿瘤已无法被检测到了。这一联合疗法的缓解率比单独使用Keytruda或T-VEC治疗的预期缓解率(通常约为35%-40%)要高得多。


让人欣喜的是,除了有效性的提升,Keytruda+T-VEC联合治疗的副作用也没有比单独使用其中一种药物带来的副作用更糟,包括疲劳寒颤(fatigue chills)和发烧。


7#Cell对抗寨卡病毒感染的mRNA 疫苗


Modified mRNA Vaccines Protect against Zika Virus Infection


2017年3月9日,发表在Cell杂志上的这篇论文中,疫苗开发人员通过注射编码病毒蛋白质的合成信使RNA成功帮助小鼠抵抗了寨卡病毒。论文的共同通讯作者Giuseppe Ciaramella说:“寨卡病毒会将它们的RNA注入细胞质中,然后‘劫持’细胞的翻译机制来产生抗原。我们的mRNA疫苗能够让细胞做同样的事情。”


具体来说,这种疫苗包含了用于编码2种寨卡病毒蛋白质的RNA,当疫苗RNA进入小鼠细胞后,核糖体会利用它来构建对应的蛋白质。这两种蛋白质不能感染任何其它细胞,但它们足以让小鼠免疫系统学会识别寨卡病毒,建立免疫力。


除了这一点,使用RNA疫苗的另一个关键优势在于它们的可变性。生物学家在改变RNA链方面已有很多经验,这使得定制RNA疫苗更加容易。


8#Cell帕金森病竟然是肠道微生物作怪?


Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease



肠道菌群已经成为近年来最火爆的研究领域之一。在这篇论文中,来自加州理工学院的科学家们首次证实肠道细菌和帕金森病(PD)之间的功能联系。研究表明,肠道菌群的组成变化,或是肠道细菌本身的改变,都可能对帕金森病中运动能力的恶化产生极大影响。


由于胃肠道问题通常在运动症状出现之前就已经发生了,因此,研究人员推断肠道微生物可能是导致PD的罪魁祸首之一。


为了证实这一猜想,研究人员使用了过表达α-Syn并表现出帕金森症状的小鼠。其中,一组小鼠具有复杂的肠道菌群;另一组则为无菌小鼠(在完全无菌的环境中繁殖,因此缺乏肠道细菌)。通过测试两组小鼠的运动技能,研究人员发现,无菌小鼠的表现明显优于具有完整微生物组的小鼠;同时,帕金森病的典型症状在无菌小鼠中都消失了。基于这些结果,科学家们确定,肠道菌群在帕金森病症状中扮演着重要角色。


9#Cell证明“辟谷”能治糖尿病


Fasting-Mimicking Diet Promotes Ngn3-Driven b-Cell Regeneration to Reverse Diabetes



“辟谷”源自道家养生中的“不食五谷”,是古人常用的一种养生方式。很多人认为“辟谷”仅仅是古人对“不食五谷,吸风饮露”的仙人行径的想象与向往,但现今越来越多的研究却为“辟谷”找到了有益健康的科学依据。2017年2月23日,Cell杂志报道的一篇来自美国南加州大学的研究表明,模仿空腹效果的节食方式能促进生产胰岛素的胰腺细胞的再生,在小鼠中减轻1型和2型糖尿病的症状。


具体来说,该研究证实,每周四天空腹禁食的小鼠在糖尿病方面有显著的扭转(即使在疾病晚期的小鼠中也是如此),它们恢复了健康的胰岛素生产,降低了胰岛素抵抗,并表现出了更稳定的血糖水平。


10#CellDNA损伤期间,基因转录会发生什么变化?


UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene



在2017年2月23日发表于Cell杂志上的这篇论文中,Svejstrup等发现,正常情况下较长的ASCC3转录物(transcripts)会在DNA受到损伤后变得更短。而敲除短的ASCC3转录物(在紫外线照射后产生的)会阻止细胞恢复正常的转录水平。“如果没有短的ASCC3转录物,细胞就不再能对DNA损伤做出正确的反应,并且会死亡。”Svejstrup解释道。


不过,对于短版的ASCC3转录物是如何帮助修复损伤的,科学家们还未找到答案。

来源/生物探索